Growth Estimation¶
Estimate annual tree growth rates.
Overview¶
The growth() function calculates annual growth estimates using GRM methodology.
import pyfia
db = pyfia.FIA("georgia.duckdb")
db.clip_by_state("GA")
# Net growth volume
result = pyfia.growth(db, measure="volume")
# Growth by species
by_species = pyfia.growth(db, measure="volume", grp_by="SPCD")
Function Reference¶
growth
¶
growth(db: Union[str, FIA], grp_by: Optional[Union[str, List[str]]] = None, by_species: bool = False, by_size_class: bool = False, land_type: str = 'forest', tree_type: str = 'gs', measure: str = 'volume', tree_domain: Optional[str] = None, area_domain: Optional[str] = None, totals: bool = True, variance: bool = False, most_recent: bool = False) -> DataFrame
Estimate annual tree growth from FIA data using GRM methodology.
Calculates annual growth of tree volume, biomass, or tree count using FIA's Growth-Removal-Mortality (GRM) tables following EVALIDator methodology.
| PARAMETER | DESCRIPTION |
|---|---|
db
|
Database connection or path to FIA database.
TYPE:
|
grp_by
|
Column name(s) to group results by.
TYPE:
|
by_species
|
If True, group results by species code (SPCD).
TYPE:
|
by_size_class
|
If True, group results by diameter size classes.
TYPE:
|
land_type
|
Land type to include in estimation.
TYPE:
|
tree_type
|
Tree type to include.
TYPE:
|
measure
|
What to measure in the growth estimation.
TYPE:
|
tree_domain
|
SQL-like filter expression for tree-level filtering.
TYPE:
|
area_domain
|
SQL-like filter expression for area/condition-level filtering.
TYPE:
|
totals
|
If True, include population-level total estimates.
TYPE:
|
variance
|
If True, calculate and include variance and standard error estimates.
TYPE:
|
most_recent
|
If True, automatically filter to the most recent evaluation.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
DataFrame
|
Growth estimates with columns: - GROWTH_ACRE: Annual growth per acre - GROWTH_TOTAL: Total annual growth (if totals=True) - GROWTH_ACRE_SE: Standard error of per-acre estimate (if variance=True) - Additional grouping columns if specified |
See Also
mortality : Estimate annual mortality using GRM tables removals : Estimate annual removals/harvest using GRM tables
Examples:
Basic volume growth on forestland:
Growth by species (tree count):
Notes
This function uses FIA's GRM tables which contain component-level tree data for calculating annual growth. The implementation follows EVALIDator methodology for statistically valid estimation.
Source code in src/pyfia/estimation/estimators/growth.py
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 | |
Measurement Types¶
| Measure | Description |
|---|---|
"volume" |
Net cubic-foot volume growth |
"sawlog" |
Board-foot sawlog growth |
"biomass" |
Above-ground biomass growth |
"tpa" |
Trees per acre growth |
Technical Notes¶
Growth estimation uses:
TREE_GRM_COMPONENTtable for growth componentsTREE_GRM_MIDPTtable for annualized valuesTREE_GRM_BEGINtable for initial measurementsBEGINENDtable for temporal alignment
Net growth = Survivor growth + Ingrowth - Mortality
Examples¶
Total Net Growth¶
result = pyfia.growth(
db,
measure="volume",
land_type="forest"
)
print(f"Annual Growth: {result['estimate'][0]:,.0f} cu ft/year")
Growth by Species¶
result = pyfia.growth(
db,
measure="volume",
grp_by="SPCD"
)
result = pyfia.join_species_names(result, db)
print(result.sort("estimate", descending=True).head(10))