Growth Estimation¶
Estimate annual tree growth rates.
Overview¶
The growth() function calculates annual growth estimates using GRM methodology.
import pyfia
db = pyfia.FIA("georgia.duckdb")
db.clip_by_state("GA")
# Net growth volume
result = pyfia.growth(db, measure="volume")
# Growth by species
by_species = pyfia.growth(db, measure="volume", grp_by="SPCD")
Function Reference¶
growth
¶
growth(db: str | FIA, grp_by: str | list[str] | None = None, by_species: bool = False, by_size_class: bool = False, size_class_type: str = 'standard', land_type: str = 'forest', tree_type: str = 'gs', measure: str = 'volume', tree_domain: str | None = None, area_domain: str | None = None, totals: bool = True, variance: bool = False, most_recent: bool = False) -> DataFrame
Estimate annual tree growth from FIA data using GRM methodology.
Calculates annual growth of tree volume, biomass, or tree count using FIA's Growth-Removal-Mortality (GRM) tables following EVALIDator methodology.
| PARAMETER | DESCRIPTION |
|---|---|
db
|
Database connection or path to FIA database.
TYPE:
|
grp_by
|
Column name(s) to group results by.
TYPE:
|
by_species
|
If True, group results by species code (SPCD).
TYPE:
|
by_size_class
|
If True, group results by diameter size classes.
TYPE:
|
size_class_type
|
Type of size class grouping to use (only applies when by_size_class=True): - "standard": FIA numeric ranges (1.0-4.9, 5.0-9.9, etc.) - "descriptive": Text labels (Saplings, Small, Medium, Large) - "market": Timber market categories (Pulpwood, Chip-n-Saw, Sawtimber)
TYPE:
|
land_type
|
Land type to include in estimation.
TYPE:
|
tree_type
|
Tree type to include.
TYPE:
|
measure
|
What to measure in the growth estimation.
TYPE:
|
tree_domain
|
SQL-like filter expression for tree-level filtering.
TYPE:
|
area_domain
|
SQL-like filter expression for area/condition-level filtering.
TYPE:
|
totals
|
If True, include population-level total estimates.
TYPE:
|
variance
|
If True, calculate and include variance and standard error estimates.
TYPE:
|
most_recent
|
If True, automatically filter to the most recent evaluation.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
DataFrame
|
Growth estimates with columns: - GROWTH_ACRE: Annual growth per acre - GROWTH_TOTAL: Total annual growth (if totals=True) - GROWTH_ACRE_SE: Standard error of per-acre estimate (if variance=True) - Additional grouping columns if specified |
See Also
mortality : Estimate annual mortality using GRM tables removals : Estimate annual removals/harvest using GRM tables
Examples:
Basic volume growth on forestland:
Growth by species (tree count):
Notes
This function uses FIA's GRM tables which contain component-level tree data for calculating annual growth. The implementation follows EVALIDator methodology for statistically valid estimation.
Source code in src/pyfia/estimation/estimators/growth.py
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 | |
Measurement Types¶
| Measure | Description |
|---|---|
"volume" |
Net cubic-foot volume growth |
"sawlog" |
Board-foot sawlog growth |
"biomass" |
Above-ground biomass growth |
"tpa" |
Trees per acre growth |
Technical Notes¶
Growth estimation uses:
TREE_GRM_COMPONENTtable for growth componentsTREE_GRM_MIDPTtable for annualized valuesTREE_GRM_BEGINtable for initial measurementsBEGINENDtable for temporal alignment
Net growth = Survivor growth + Ingrowth - Mortality
Examples¶
Total Net Growth¶
result = pyfia.growth(
db,
measure="volume",
land_type="forest"
)
print(f"Annual Growth: {result['estimate'][0]:,.0f} cu ft/year")
Growth by Species¶
result = pyfia.growth(
db,
measure="volume",
grp_by="SPCD"
)
result = pyfia.join_species_names(result, db)
print(result.sort("estimate", descending=True).head(10))
Growing Stock Growth on Timberland¶
Biomass Growth¶
result = pyfia.growth(
db,
measure="biomass",
land_type="forest"
)
print(f"Annual Biomass Growth: {result['estimate'][0]:,.0f} tons/year")
Growth by Size Class¶
Group growth by diameter size classes:
# Standard FIA size classes (1.0-4.9, 5.0-9.9, 10.0-19.9, etc.)
result = pyfia.growth(db, by_size_class=True)
print(result)
# Descriptive labels (Saplings, Small, Medium, Large)
result = pyfia.growth(db, by_size_class=True, size_class_type="descriptive")
print(result)
# Timber market classes (Pulpwood, Chip-n-Saw, Sawtimber)
result = pyfia.growth(db, by_size_class=True, size_class_type="market")
print(result)
See Mortality - Size Class Types for details on size class options.