Mortality Estimation¶
Estimate annual tree mortality rates and volumes.
Overview¶
The mortality() function calculates annual mortality estimates using GRM (Growth, Removals, Mortality) methodology.
import pyfia
db = pyfia.FIA("georgia.duckdb")
db.clip_by_state("GA")
# Mortality volume
result = pyfia.mortality(db, measure="volume")
# Mortality by cause
by_agent = pyfia.mortality(db, measure="volume", grp_by="AGENTCD")
Function Reference¶
mortality
¶
mortality(db: str | FIA, grp_by: str | list[str] | None = None, by_species: bool = False, by_size_class: bool = False, size_class_type: str = 'standard', land_type: str = 'timber', tree_type: str = 'gs', measure: str = 'volume', tree_domain: str | None = None, area_domain: str | None = None, as_rate: bool = False, totals: bool = True, variance: bool = False, most_recent: bool = False) -> DataFrame
Estimate annual tree mortality from FIA data using GRM methodology.
Uses TREE_GRM_COMPONENT and TREE_GRM_MIDPT tables to calculate annual mortality following FIA's Growth-Removal-Mortality approach. This is the correct FIA statistical methodology for mortality estimation.
| PARAMETER | DESCRIPTION |
|---|---|
db
|
Database connection or path to FIA database.
TYPE:
|
grp_by
|
Column name(s) to group results by.
TYPE:
|
by_species
|
If True, group results by species code (SPCD).
TYPE:
|
by_size_class
|
If True, group results by diameter size classes.
TYPE:
|
size_class_type
|
Type of size class grouping to use (only applies when by_size_class=True): - "standard": FIA numeric ranges (1.0-4.9, 5.0-9.9, etc.) - "descriptive": Text labels (Saplings, Small, Medium, Large) - "market": Timber market categories (Pre-merchantable, Pulpwood, Chip-n-Saw, Sawtimber)
TYPE:
|
land_type
|
Land type to include in estimation.
TYPE:
|
tree_type
|
Tree type to include.
TYPE:
|
measure
|
What to measure in the mortality estimation.
TYPE:
|
tree_domain
|
SQL-like filter expression for tree-level filtering.
TYPE:
|
area_domain
|
SQL-like filter expression for area/condition-level filtering.
TYPE:
|
as_rate
|
If True, return mortality as a rate (mortality/live).
TYPE:
|
totals
|
If True, include population-level total estimates.
TYPE:
|
variance
|
If True, calculate and include variance and standard error estimates.
TYPE:
|
most_recent
|
If True, automatically filter to the most recent evaluation.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
DataFrame
|
Mortality estimates with columns: - MORT_ACRE: Annual mortality per acre - MORT_TOTAL: Total annual mortality (if totals=True) - MORT_ACRE_SE: Standard error of per-acre estimate (if variance=True) - MORT_TOTAL_SE: Standard error of total estimate (if variance=True) - Additional grouping columns if specified |
See Also
growth : Estimate annual growth using GRM tables removals : Estimate annual removals/harvest using GRM tables
Examples:
Basic volume mortality on forestland:
Mortality by species (tree count):
Pre-merchantable tree mortality (trees < 5" DBH):
>>> results = mortality(
... db,
... tree_type="live", # Include all live trees, not just growing stock
... by_size_class=True,
... size_class_type="market", # Returns Pre-merchantable, Pulpwood, etc.
... measure="tpa", # TPA recommended for small trees (no volume calculated)
... )
>>> # Filter to pre-merchantable only:
>>> premerch = results.filter(pl.col("SIZE_CLASS") == "Pre-merchantable")
Notes
This function uses FIA's GRM tables which contain pre-calculated annual mortality values. The TPA_UNADJ fields are already annualized.
Pre-merchantable Tree Support:
By default (tree_type="gs"), only growing stock trees (≥5" DBH) are
included. To include pre-merchantable trees (1.0"-4.9" DBH), use
tree_type="live" or tree_type="al". When using market size classes,
pre-merchantable trees are automatically categorized as "Pre-merchantable".
Note that FIA does not calculate volume for trees < 5" DBH, so
measure="tpa" is recommended for pre-merchantable mortality analysis.
For economic valuation of pre-merchantable mortality, consider the
"discount timber price" method (Bruck et al.) which values small trees
based on their future merchantable potential.
Source code in src/pyfia/estimation/estimators/mortality.py
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | |
Measurement Types¶
| Measure | Description |
|---|---|
"volume" |
Net cubic-foot volume mortality |
"sawlog" |
Board-foot sawlog mortality |
"biomass" |
Above-ground biomass mortality |
"tpa" |
Trees per acre mortality |
"count" |
Tree count mortality |
"basal_area" |
Basal area mortality |
Technical Notes¶
Mortality estimation uses:
TREE_GRM_COMPONENTtable for mortality attributesTREE_GRM_MIDPTtable for annualized values- Trees with
TPAMORT_UNADJ > 0are mortality trees - Annual rates calculated using measurement interval
Examples¶
Total Mortality Volume¶
result = pyfia.mortality(
db,
measure="volume",
land_type="forest"
)
print(f"Annual Mortality: {result['estimate'][0]:,.0f} cu ft/year")
Mortality by Agent (Tree-Level)¶
result = pyfia.mortality(
db,
measure="volume",
grp_by="AGENTCD"
)
# AGENTCD: 10=Insect, 20=Disease, 30=Fire, 50=Weather, etc.
print(result)
Mortality by Disturbance (Condition-Level)¶
result = pyfia.mortality(
db,
measure="volume",
grp_by="DSTRBCD1"
)
# DSTRBCD1: 30=Fire, 52=Hurricane/wind, 54=Drought, etc.
print(result)
Mortality by Species¶
result = pyfia.mortality(
db,
measure="volume",
grp_by="SPCD"
)
result = pyfia.join_species_names(result, db)
print(result.sort("estimate", descending=True).head(10))
Growing Stock Mortality on Timberland¶
Biomass Mortality¶
result = pyfia.mortality(
db,
measure="biomass",
land_type="forest"
)
print(f"Annual Biomass Mortality: {result['estimate'][0]:,.0f} tons/year")
Mortality by Size Class¶
Group mortality by diameter size classes:
# Standard FIA size classes (1.0-4.9, 5.0-9.9, 10.0-19.9, etc.)
result = pyfia.mortality(db, by_size_class=True)
print(result)
# Descriptive labels (Saplings, Small, Medium, Large)
result = pyfia.mortality(db, by_size_class=True, size_class_type="descriptive")
print(result)
# Timber market classes (Pulpwood, Chip-n-Saw, Sawtimber)
# Based on TimberMart-South categories
result = pyfia.mortality(db, by_size_class=True, size_class_type="market")
print(result)
Size Class Types¶
| Type | Description | Categories |
|---|---|---|
"standard" |
FIA numeric ranges | 1.0-4.9, 5.0-9.9, 10.0-19.9, 20.0-29.9, 30.0+ |
"descriptive" |
Text labels | Saplings, Small, Medium, Large |
"market" |
Timber market categories | Pre-merchantable, Pulpwood, Chip-n-Saw (pine only), Sawtimber |
Market Size Classes
Market size classes use species-aware thresholds based on TimberMart-South:
- Pre-merchantable (all species): < 5.0" DBH
- Pine/Softwood (SPCD < 300): Pulpwood (5-8.9"), Chip-n-Saw (9-11.9"), Sawtimber (12"+)
- Hardwood (SPCD >= 300): Pulpwood (5-10.9"), Sawtimber (11"+)
Pre-merchantable Tree Mortality¶
By default, mortality() only includes growing stock trees (≥5" DBH). To analyze mortality of smaller trees, use tree_type="live":
# Include pre-merchantable trees (1.0" to 4.9" DBH)
result = pyfia.mortality(
db,
tree_type="live", # Include all live trees, not just growing stock
by_size_class=True,
size_class_type="market",
measure="tpa" # TPA recommended for small trees
)
# Filter to pre-merchantable only
import polars as pl
premerch = result.filter(pl.col("SIZE_CLASS") == "Pre-merchantable")
Volume not available for small trees
FIA does not calculate volume for trees < 5" DBH. Use measure="tpa" or measure="count" when analyzing pre-merchantable mortality.