Mortality Estimation¶
Estimate annual tree mortality rates and volumes.
Overview¶
The mortality() function calculates annual mortality estimates using GRM (Growth, Removals, Mortality) methodology.
import pyfia
db = pyfia.FIA("georgia.duckdb")
db.clip_by_state("GA")
# Mortality volume
result = pyfia.mortality(db, measure="volume")
# Mortality by cause
by_agent = pyfia.mortality(db, measure="volume", grp_by="AGENTCD")
Function Reference¶
mortality
¶
mortality(db: Union[str, FIA], grp_by: Optional[Union[str, List[str]]] = None, by_species: bool = False, by_size_class: bool = False, land_type: str = 'timber', tree_type: str = 'gs', measure: str = 'volume', tree_domain: Optional[str] = None, area_domain: Optional[str] = None, as_rate: bool = False, totals: bool = True, variance: bool = False, most_recent: bool = False) -> DataFrame
Estimate annual tree mortality from FIA data using GRM methodology.
Uses TREE_GRM_COMPONENT and TREE_GRM_MIDPT tables to calculate annual mortality following FIA's Growth-Removal-Mortality approach. This is the correct FIA statistical methodology for mortality estimation.
| PARAMETER | DESCRIPTION |
|---|---|
db
|
Database connection or path to FIA database.
TYPE:
|
grp_by
|
Column name(s) to group results by.
TYPE:
|
by_species
|
If True, group results by species code (SPCD).
TYPE:
|
by_size_class
|
If True, group results by diameter size classes.
TYPE:
|
land_type
|
Land type to include in estimation.
TYPE:
|
tree_type
|
Tree type to include.
TYPE:
|
measure
|
What to measure in the mortality estimation.
TYPE:
|
tree_domain
|
SQL-like filter expression for tree-level filtering.
TYPE:
|
area_domain
|
SQL-like filter expression for area/condition-level filtering.
TYPE:
|
as_rate
|
If True, return mortality as a rate (mortality/live).
TYPE:
|
totals
|
If True, include population-level total estimates.
TYPE:
|
variance
|
If True, calculate and include variance and standard error estimates.
TYPE:
|
most_recent
|
If True, automatically filter to the most recent evaluation.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
DataFrame
|
Mortality estimates with columns: - MORT_ACRE: Annual mortality per acre - MORT_TOTAL: Total annual mortality (if totals=True) - MORT_ACRE_SE: Standard error of per-acre estimate (if variance=True) - MORT_TOTAL_SE: Standard error of total estimate (if variance=True) - Additional grouping columns if specified |
See Also
growth : Estimate annual growth using GRM tables removals : Estimate annual removals/harvest using GRM tables
Examples:
Basic volume mortality on forestland:
Mortality by species (tree count):
Notes
This function uses FIA's GRM tables which contain pre-calculated annual mortality values. The TPA_UNADJ fields are already annualized.
Source code in src/pyfia/estimation/estimators/mortality.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | |
Measurement Types¶
| Measure | Description |
|---|---|
"volume" |
Net cubic-foot volume mortality |
"sawlog" |
Board-foot sawlog mortality |
"biomass" |
Above-ground biomass mortality |
"tpa" |
Trees per acre mortality |
"count" |
Tree count mortality |
"basal_area" |
Basal area mortality |
Technical Notes¶
Mortality estimation uses:
TREE_GRM_COMPONENTtable for mortality attributesTREE_GRM_MIDPTtable for annualized values- Trees with
TPAMORT_UNADJ > 0are mortality trees - Annual rates calculated using measurement interval
Examples¶
Total Mortality Volume¶
result = pyfia.mortality(
db,
measure="volume",
land_type="forest"
)
print(f"Annual Mortality: {result['estimate'][0]:,.0f} cu ft/year")
Mortality by Agent¶
result = pyfia.mortality(
db,
measure="volume",
grp_by="AGENTCD"
)
# AGENTCD: 10=Insect, 20=Disease, 30=Fire, etc.
print(result)
Mortality by Species¶
result = pyfia.mortality(
db,
measure="volume",
grp_by="SPCD"
)
result = pyfia.join_species_names(result, db)
print(result.sort("estimate", descending=True).head(10))