Removals Estimation¶
Estimate average annual timber removals.
Overview¶
The removals() function calculates annual removals estimates (harvested timber).
import pyfia
db = pyfia.FIA("georgia.duckdb")
db.clip_by_state("GA")
# Total removals
result = pyfia.removals(db, measure="volume")
# Removals by species
by_species = pyfia.removals(db, measure="volume", grp_by="SPCD")
Function Reference¶
removals
¶
removals(db: Union[str, FIA], grp_by: Optional[Union[str, List[str]]] = None, by_species: bool = False, by_size_class: bool = False, land_type: str = 'forest', tree_type: str = 'gs', measure: str = 'volume', tree_domain: Optional[str] = None, area_domain: Optional[str] = None, totals: bool = True, variance: bool = False, most_recent: bool = False, remeasure_period: float = 5.0) -> DataFrame
Estimate average annual removals from FIA data.
Calculates average annual removals of merchantable bole wood volume of growing-stock trees (at least 5 inches d.b.h.) on forest land.
| PARAMETER | DESCRIPTION |
|---|---|
db
|
Database connection or path
TYPE:
|
grp_by
|
Columns to group by (e.g., "STATECD", "FORTYPCD")
TYPE:
|
by_species
|
Group by species code
TYPE:
|
by_size_class
|
Group by diameter size classes
TYPE:
|
land_type
|
Land type: "forest", "timber", or "all"
TYPE:
|
tree_type
|
Tree type: "gs" (growing stock), "all"
TYPE:
|
measure
|
What to measure: "volume", "biomass", or "count"
TYPE:
|
tree_domain
|
SQL-like filter for trees
TYPE:
|
area_domain
|
SQL-like filter for area
TYPE:
|
totals
|
Include population totals
TYPE:
|
variance
|
Return variance instead of SE
TYPE:
|
most_recent
|
Use most recent evaluation
TYPE:
|
remeasure_period
|
Remeasurement period in years for annualization
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
DataFrame
|
Removals estimates with columns: - REMOVALS_PER_ACRE: Annual removals per acre - REMOVALS_TOTAL: Total annual removals - REMOVALS_PER_ACRE_SE: Standard error of per-acre estimate - REMOVALS_TOTAL_SE: Standard error of total estimate - Additional grouping columns if specified |
Examples:
>>> # Biomass removals by forest type
>>> results = removals(
... db,
... grp_by="FORTYPCD",
... measure="biomass"
... )
>>> # Removals on timberland only
>>> results = removals(
... db,
... land_type="timber",
... area_domain="SITECLCD >= 225" # Productive sites
... )
Notes
Removals include trees cut or otherwise removed from the inventory, including those diverted to non-forest use. The calculation uses TREE_GRM_COMPONENT table with CUT and DIVERSION components.
The estimate is annualized by dividing by the remeasurement period (default 5 years).
Source code in src/pyfia/estimation/estimators/removals.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | |
Measurement Types¶
| Measure | Description |
|---|---|
"volume" |
Net cubic-foot volume removals |
"biomass" |
Above-ground biomass removals |
Technical Notes¶
Removals estimation uses:
TREE_GRM_COMPONENTtable for removal attributesTREE_GRM_MIDPTtable for annualized values- Trees with
TPAREMV_UNADJ > 0are removal trees - Calculated as:
TPAREMV_UNADJ × VOLCFNET × ADJ × EXPNS
Note
PyFIA calculates removals from raw components rather than using pre-calculated REMVCFGS columns for consistency with EVALIDator methodology.
Examples¶
Total Removals Volume¶
result = pyfia.removals(
db,
measure="volume",
land_type="forest"
)
print(f"Annual Removals: {result['estimate'][0]:,.0f} cu ft/year")
Removals by Species¶
result = pyfia.removals(
db,
measure="volume",
grp_by="SPCD"
)
result = pyfia.join_species_names(result, db)
print(result.sort("estimate", descending=True).head(10))
Growing Stock Removals¶
Biomass Removals¶
result = pyfia.removals(
db,
measure="biomass",
land_type="forest"
)
print(f"Annual Biomass Removals: {result['estimate'][0]:,.0f} tons/year")
Growth-Drain Analysis¶
# Compare growth to removals
growth = pyfia.growth(db, measure="volume")
removals = pyfia.removals(db, measure="volume")
mortality = pyfia.mortality(db, measure="volume")
print(f"Growth: {growth['estimate'][0]:,.0f} cu ft/year")
print(f"Removals: {removals['estimate'][0]:,.0f} cu ft/year")
print(f"Mortality: {mortality['estimate'][0]:,.0f} cu ft/year")
net_change = growth['estimate'][0] - removals['estimate'][0] - mortality['estimate'][0]
print(f"Net Change: {net_change:,.0f} cu ft/year")